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The interaction between an electric arc and a gas flow is governed by the flow of mass relative
to surfaces of constant temperature. This fact is used to introduce a new method for the computation
of decaying wall-stabilized arcs in which the temperature is used as a free variable instead of the
radial coordinate. The method is also applicable to more general cases and gives direct insight into
the physical processes involved. An implicit two level scheme is described which guarantees numeri-
cal stability for any chosen time step. The method is applied to a decaying wall stabilized arc. The
results agree quite well with published experimental curves.

I. Introduction

There is a general interest in both the stationary
and the dynamic behaviour of electric arcs because
of different important technical applications and
due to the fact that this type of plasma can be pro-
duced and studied in relatively simple geometries.
A large number of papers has been published on
the stationary wall-stabilized arc dealing mostly with
the evaluation of material functions from arc mea-
surements 175,

Fewer papers deal with the dynamic behaviour
of wall-stabilized arcs 6719, although the time varia-
tion of such a simple type of arc readily reveals the
main features of nonstationary arc behaviour. In
this paper a new method for the computation of de-
caying wall-stabilized arcs is presented. The method
is also applicable to more general cases, but in this
particular example it clearly shows the principle
underlying the interaction between electric arcs and
gas flow, i.e. the importance of the flow of mass
relative to the isothermal surfaces ' 2. The method
described is an improvement of the computation of
decaying arcs due to its simple form, its stability
in numerical calculations and its ability to illustrate
the underlying physical processes. The computations
are performed for a 5 mm @, wall-stabilized arc,
which carries a current of 100 A in 1 atm nitrogen.
All important physical mechanisms are included
such as heat conduction and convective and radiative
transport. For this special example experimental re-
sults have been published 1%, which can be used for
comparison.

Reprint requests to Dr. W. HERMANN, Brown Boveri Re-
search Center, CH-5401 Baden (Schweiz).
* Herrn Prof. H. MAECKER zum 60. Geburtstag gewidmet.

I1. Basic Equations and Physical Picture

The arc considered here has cylindrical symme-
try. There is no axial mass velocity, so the axial
momentum balance can be omitted. The radial bal-
ance of momentum is neglected since radial pres-
sure gradients are equalized on a time scale short
compared to the decay time. Therefore the total arc
behaviour is described by the conservation of mass
and energy:
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The symbols used here are: T’ temperature, E elec-
trical field strength, v, radial mass velocity, ¢ mass
density, » thermal conductivity, o electrical conduc-
tivity, h enthalpy. The internal energy ¢ is given
by ¢=h —p/o. The term u is the balance between
the radiative power “e”” emitted and “a” absorbed
per unit volume

(3)

We consider the decay of an originally stationary
arc after current interruption, i.e. after the term
o E? in Eq. (2) has dropped to zero. The process is
described by the system of non-linear parabolic Eqs.
(1) and (2). It can be formulated as an initial value
problem and is solved by starting from a stationary
distribution at time zero.

u=e—a.

The stationary arc is described by the right hand
side of Equation (2). The energy supplied by ohmic
heating is carried away by conduction and radia-
tion. The temperature profile is curved in such a
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way that the energy flow by conduction, together
with the radiative energy flow across a certain ra-
dius r equals the energy input by ohmic heating
within the area enclosed by r:

Q) @

2n(—rz f) +2afurdr=2afoE2rdr.
0 0

(2a)

In the time immediately after current interruption
the heating term has disappeared, but the tempera-
ture profile still maintains its original form. There-
fore the radiative and conductive transport terms
keep their old distribution and the same amount of
energy is carried across each radius by conduction
and radiation as before arc interruption. This loss
of energy causes a decrease of the energy content
within the observed radius and therefore a decrease
in local temperature. The temperature profile is
therefore changed and with it the transport terms.

In the inner part of the arc the mass density
rises strongly with falling temperature and a radial
mass flow from the wall region towards the core
of the arc is established. It is assumed that the arc
vessel is closed and so the total pressure drops
slowly. The induced radial velocity also influences
the energy balance as can be seen from Equation
(2). If there is a local change of enthalpy the con-
vection term describes an additional cooling as the
inflowing colder gas is heated up.

The two terms Sh/3t and v, Sh/Or of Eq. (2)
describe the change of enthalpy DA/D¢ which is ob-
served in a coordinate system moving with a mass
element. These two terms can be substituted by one
single term if the velocity of mass relative to the
isothermal surfaces of a given temperature distri-
bution, vy, is introduced :

For simplicity of discussion the pressure depen-
dence of the enthalpy is dropped and the term
Dh/Dt can be represented by the change of enthalpy
with respect to temperature times the change of tem-
perature along the path of the element.
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Here the abbreviation vy is used instead of v, to
stress the meaning of v, as the velocity of mass,
which, like all other velocities in the described ex-
ample has only a radial component. ¢, is the spe-
cific heat at constant pressure.
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Given a radial temperature distribution the change
of temperature along the path of a mass element,
DT/Dt, can be viewed as the product of the local
change of temperature with radius, 37/3r, times the
velocity of the mass element relative to the tempera-
ture distribution, i. e. relative to the isothermal sur-
faces, vy .

D¢

Then Eq. (4 a) reads:
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Only if mass moves relative to the temperature dis-
tribution does the enthalpy of a mass element change
and does the term described by Eq. (4b) become
effective in the total energy balance. If the tempera-
ture distribution is carried with the gas flow (frozen
temperature distribution) no gas is heated up and
the term corresponding to Eq. (4 a) disappears from
the energy balance. On the other hand this term
also becomes effective if the temperature distribution
moves relative to the stationary gas, since gas is
again heated up. Whenever the stationary energy
balance is no longer fulfilled a flow of the iso-
thermal surfaces relative to mass is set up to balance
the other terms in the energy equation. In the case
of the decaying wall-stabilized arc, for instance,
immediately after current interruption the ohmic
heating term disappears in the core of the arc and
a high relative velocity of mass against the iso-
thermal surfaces will be established there. In the
region close to the wall the energy balance is un-
disturbed; there the relative velocity is zero and the
temperature distribution is carried with the mass
flow.

If the absolute velocity of the isothermal surfaces

V= arl/al
is introduced, the velocity of mass relative to the
isothermal surfaces is given by the difference be-
tween both absolute velocities, vy and vy:
UMI = UM — V] - (6)

The velocity of the isothermal surfaces represents
the local variation of temperature with time:

T 3T 3rp T _
3% O ot @r I (5b)

The introduction of the velocity of the isothermal
surfaces greatly simplifies the computation of other
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types of arcs, besides decaying arcs. This velocity
appears directly when a transformation to a co-
ordinate system is performed in which the tempera-
ture replaces the radius as an independent variable.

III. Isothermal Representation

The system of a decaying cylindrical arc is de-
scribed by the two independent variables radius r
and time f. As the temperature increases continu-
ously from the wall towards the arc axis there is a
one to one correspondence between the radius and
the temperature, and the radius can be replaced by
the temperature as a free variable. Instead of asking
for the temperature at a certain r; and ¢;, T (r;, ;)
in this representation with T and ¢ as free variables,
one asks for the radius corresponding to a certain
temperature T;, at a certain time ¢;, r(T;,t;). This
means that one follows the moving isothermal sur-
faces. In this system the described initial value
problem is solved by computing at every time level
the variation with time of the radii of the isothermal
surfaces, Or;/Ot, which yields by some integration
procedure the position of the isothermal surfaces at
an advanced time level. Besides the simplification
of the whole computation there are two main advan-
tages to this transformation. Firstly the non-linearity
of the equations due to the temperature dependence
of the material functions disappears. Secondly, the
choice of radial grid points which are equidistant in
temperature ensures an optimal resolution of the
radial profiles at any time. In the core of the arc
only a few mesh points are used while in the outer
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region, where the temperature changes rapidly with
radius, a large number of mesh points is used with-
in a certain radial distance. This fact becomes even
more important in the computation of axially blown
arcs since in this case the temperature stays nearly
constant over a large section of the arc core while
it drops from this core value to the cold gas value
within a very short radial distance 3. There an ad-
equate mesh point distribution is maintained even
if, in the case of a decaying arc, this region of steep
temperature gradients moves towards the arc axis.
The general procedure and advantages of such a
transformation are described in 2.

In the simple case considered here the basic
equations can be transformed to the new coordinate
system directly. The space derivative in the old co-
ordinate system has to be replaced by the derivative
with respect to temperature. However, in both cases
the derivative must be performed perpendicular to
the time ‘coordinate, i.e. in pure radial direction
and so one can still use the old abbreviation (3/3r);
in the new coordinate system.

The time derivative has to be carried out along
an isothermal line, i. e. one has to add to the change
with time at constant radius a term representing
the change due to the radial displacement of an
isothermal line:

(éaff)T: (587)r+ ’aar:' (Aaar_)tz <Sat )r & vl(a:t’”)" =

Replacing the time derivative (3/3¢), in Eq. (2) by
Eq. (7):

(2b)

On the left hand side the relative velocity between mass and the isothermal surface, vyp, appears. Multi-
plication of this velocity by the density ¢ times the circumference 2 7 r; yields the mass flow per unit arc

length across the isothermal surface at radius r;:

gro=2nrio(vy—v1) =27r;0vy. (8)

If the relative mass flow, ¢, is isolated in Eq. (2b) one obtains

2xr

e 3h]'ari r

The quantity ¢ is determined by the balance of all
energy terms except those due to convection and the
local variation of temperature with time. It becomes
effective only if this balance is disturbed. This is
the case, for example, if one starts from the statio-
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nary arc, where the term in brackets is zero, and
the ohmic heating term is dropped.

As a time variation of enthalpy along an iso-
thermal surface can only be due to a change in pres-
sure, no time derivative appears in Eq. (8 a) except
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dp/dt. The term dp/d¢ is assumed constant over the
whole arc cross section and is determined from the
conservation of total mass. Assuming the value
dp/dt to be known, the ¢; at each isotherm can be
computed directly for any given radial temperature
distribution according to Equation (8 a).

To obtain the radial temperature distribution at
an advanced time level one has to determine the
time variation of the isothermal radii, ari/at, i. e.
the velocity of the isothermal surfaces, vy, for the
given distribution. This is possible using the con-
servation of mass once the values ¢; are known.

To compute Or;/Ot in an isothermal finite dif-
ference system it is advantageous to start from an
integrated form of the mass balance. This is obtain-
ed in the new coordinate system if Eq. (1) is inte-
grated over an arc cross-section limited, not by an
independent value of radius r, but by a radius r;(T;)
corresponding to a temperature T;:

(Ty) r(Ty)

2n[‘;3rdr+2n | LRERR0 g g, f14)
i 0

cr

Taking into account the fact that the limit of inte-
gration, r(T;), is a dependent variable, whereas the
radial coordinate, r, within the integral is not, this
equation can be transformed to

(€3]
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With the definition for the mass flow relative to an
isothermal surface, ¢, , this reads:

(D]
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If the values ¢; are known this equation yields the
required time variations, Or;/St, as wil be shown
in detail in the next chapter.

1V. Method of Computation

The domain of solution is subdivided by a net
which is made up of lines of equal temperature T;
and lines of equal time #;:

Ti=T\\'+ (l_]-) AT,

ti=ty+jAt. (9)
Here T\, =T is the wall temperature and ¢; is the
time at which the decay of the arc starts.

Starting from the distribution at the time ¢, and
advancing from time level ¢; to time level ¢, the
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value of the isothermal radius r; ;,; must be deter-
mined for every grid point. To do so the time varia-
tion of all isothermal radii, Or;/3t, is computed at a
given time level ¢; and then the values of the iso-
thermal radii at the advanced time level ¢;, are de-
termined by an integration procedure. Along an iso-
thermal surface the time-variation of the squared
radius changes very little compared to that of the
radius itself; therefore the variation of r7; rather
than of r; ; is computed.

The time variations Or;2/Qt are obtained for a
given temperature distribution if Eq. (1c¢) is writ-
ten down for an area limited by two neighbouring
isothermal surfaces:

2 T2 ol
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) e 3
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Here A; is the area perpendicular to the arc axis
between the two isothermal surfaces at r>(7;) and
r2(T;_;) and 9; is the mean value of the density
within this area. As the temperature stays constant
in time between two isotherms, the density varies
only with pressure. The values of g; are known from
Eq. (8) and the temporal variation of the areas be-
tween isothermal surfaces can be computed:
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To determine the required quantities, ari“’/at, from
this equation one must know a boundary value of
this quantity.

The two boundary points of the radial grid are
the wall and the axis of the arc. The wall tempera-
ture T stays constant and is chosen as T, =T, .
The radius of this isothermal surface r,® = r,? does
not change with time:

8r12/at:0. (10)

The axial temperature Ty on the other hand is de-
creasing. The axis is not a point of constant tem-
perature and must be treated separately.

As time increases isothermal radii are disappear-
ing in the axis (see Figure 1). The isothermal sur-
face disappearing in the axis at each time level is
labelled i=N, i.e. the temperature Ty equals the
axial temperature 7'y at each time level. The number
of radial grid points, N, is decreasing with time.
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The difference between the temperature on the axis
Ty, and the temperature Ty _; of the neighbouring
isothermal surface does not equal the chosen con-
stant value AT, but depends on time. Therefore the
common formulae of an equal finite difference sys-
tem cannot be applied in the region neighbouring
the axis.

For the grid points =N and i=/N —1 the varia-
tion of the different physical quantities with the
radial coordinate, i.e. the temperature, are com-
puted using a series expansion of T in r%, where all
but three terms are dropped.

The time variation of the isothermal radius ry? is
directly given by Eq. (8) since the radial mass
velocity is zero on the axis:

vy (r*=0) =0,
Ary/dt= (3r3/3t) o = — (g/n0) 0. (11)
From this the variation of the axial temperature T’y
with time can be determined:

dT_\/'dt= — (aT/arg)ﬁ:o(aTz/at),’:o . (12)
Once the values of ¢; are computed at each grid
point of a certain time level, (3r2/3¢),2_¢ as well as
(3r,2/3t) are known quantities according to Egs.
(10) and (11). One of the two values is used as a
starting point to compute the time variation of all
isothermal radii, Or;?/3t, according to Equation (10).
The second one is used to determine dp/dt. To do
this one has to compute all values of ¢; and 3r;2/3¢
in two parts.
gi=a;+b;(dp/dt),
ar,-g/at =a;+ ﬂ,(dp/dl) . (13)
If all coefficients a;, b;, a; and f; are known, the
equation Or,2/Jt=0 for instance yields the value
dp/dt.
In Eq. (8 a) there appear derivatives with respect
to the radial coordinate. In the isothermal represen-
tation they are given by:

oF 1 SF . 1 B,‘ilfpi“,l
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For reasons of numerical stability the second deriva-

tive with respect to temperature must be isolated in

the term describing the divergence of the heat flux

vector:
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In discrete form the second derivative reads:
O\ _ rhia1—2rf+rtiog
(’a'T?)F ' (4AT)2 (16)

V. Numerical Stability

The special choice of grid points in the isothermal
representation becomes advantageous only if the
stability of the computation is not made much worse
in the transition to the new coordinate system. In
this chapter therefore we investigate the numerical
stability of the isothermal system.

If the basic equations are put in discrete form
using grid points which are equidistant in tempera-
ture, i. e. with AT = const, the radial distance, 4r,
between two neighbouring grid points can become
extremely small in certain arc regions. This implies
a severe limitation on the possible time step 4t if
the common two level explicit schemes are used for
the computation of the unknown quantities at the
advanced time level ¢;,, starting from the already
known distribution at the time level 7;:

r;;’,j+1 =7‘12,j +Az(ar,-‘-’/8t)j. (17)

This method is numerically unstable unless 4t is
smaller than the value given by the von Neumann
condition. In isothermal representation this condi-
tion reads:
(AT)2 ocp [ 3r)\2
At  Atpay = — 5 (ﬁ) : (18)
If this limiting value is computed locally, i. e. over
the arc cross section, extremely small values of
Aty,, appear in the arc region close to the wall.
These would require an injustifiably high comput-
ing time.

These instabilities can still be removed even using
an explicit method, if the three level scheme due to
Du ForT and FRANKEL !4 is applied, where the
central term in Eq. (16), 2r7; , is replaced by
rij1 +rijs . There are two disadvantages to this
method in our case. For time steps about one order
of magnitude larger than the value given by Eq. (18)
the method also becomes instable. Furthermore, an
extremely high precision in the computation is ne-
cessary.

In our computations we therefore used an im-
plicit two level scheme of the type described for in-
stance in 4. This method is stable for any time step
At, so that the value of At is limited only by the
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desired accuracy of the results. In this method an
equation is set up for each radial mesh point which
contains, in linear form, three unknown values of
the quantity required at the advanced time level.
The corresponding matrix is inverted using a tri-
diagonal solution method 1,

In the two level scheme used here the quantities
required at the advanced time level are given by 14:

-0 (37),+6(%)..

To ensure stability 0.5 <60 < 1. In our example
0 = 0.5 did yield stable behaviour.

It is assumed that at the time level ¢; the radial
distribution of all quantities, and therefore also the
values r7; and (3r2/3t);, is known. The expres-
sions (Or2/3t) ;. on the other hand, at an advanc-
ed time level depend in a very complicated way on
the unknown radii r;T)..f+1 . As the numerical instabi-
lity is caused by the second derivative with respect
- to the radial coordinate, i. e. the term given in Eq.
(16), it is sufficient to treat only the isothermal
radii appearing in Eq. (16) as unknown quantities
at the advanced time level. All other expressions in
(3r2/3t) ;.1 containing the isothermal radii r7;,;
are computed using values of 77;,; which have been
determined in an explicit way (for instance by put-
ting @ =0). In this case four unknown radii r7;1
appear in linear form in each of the Eq. (18). But
if the area between two neighbouring isothermal
surfaces

9 o
rij =ri; +4At

, (19)

Ai=n(riy —13)

(20)

is introduced instead of the radii r;, only three un-
known values, 4; j.;, appear in each equation. The
matrix representing the system of Eq. (19) is then
tri-diagonal and can be inverted according to known
methods 1%:

— 0 A1+ i di—yi dio1=6;.

Here the areas 4; are the quantities required at the
advanced time level ¢;, 1. All matrix elements a;, f;,
i, 0; are known as they are computed using radii
riji1 determined in an explicit way.

(21)

In the isothermal representation the boundary
values must be included in a special way. The in-
version of the matrix (21) is therefore described
in detail.

The matrix is inverted introducing

Ai=w;id;, 1 +gi (22)

W. HERMANN

where the coefficients

s e B _ Oityigi-1
= pimyiwicn 9T Biyiwia

can be computed as w,, and g, can be determined

directly from the area next to the wall

wy=0y/fys  g2="05/Ps.

One further boundary condition must be used to
determine the highest i-value of the 4;. In our case
this is the condition
SAi=ars

In the isothermal representation the temperature
difference between the axis and the neighbouring
isothermal surface r%_; does not equal the constant
step AT. Therefore at the grid point =N —1, Eq.
(16) cannot be applied and Eq. (19) cannot be
written in the form (21). For this reason the value
r¥-1j11 is computed according to Eq. (19) where
all radii appearing in (3ry_; /3t);.; are determin-
ed in an explicit way. The second boundary con-
dition is then:
N-1

A;::l(rl"’—r?v_l).
i-2

N\

If the abbreviations

Si=14+w;_15;_1,

Gi=Gi_1+9:Si
are used with
Se=1, Gy=g,
there follows
N-1
iz2Ai=~7(f12—f?\'-1) =Gy_2+Sy-14n_1.

From this equation Ay_; can be determined and
subsequently, with Eq. (22), all other areas 4;.

The described method yields numerical stability
in our computation as long as the computed quan-
tities do not change too much within one time step.
In the case of very strong variations within one time
step one single iteration of the whole procedure en-
sures numerical stability. In this case the coefficients
of the matrix (21) are computed using, in the sec-
ond step, the radii determined in the first step of the
iteration procedure.

VI. Computation of a Decaying Nitrogen Arc

As a specific example of the method described
above the decay, after current interruption, has been
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computed for a 5 mm (), wall-stabilized arc which
carries a current of 100 A in 1 atm nitrogen. The
stationary arc corresponding to the chosen values
is described in detail in %. The temperature varia-
tions of all material functions are known from theo-
ry as well as from experiment 1% 4. The pressure de-
pendence of the mass density and the electrical con-
ductivity have been taken into account exactly. The
pressure dependence of the thermal conductivity and
the specific heat on the other hand has nearly no
influence on the decay of the arc in the range con-
sidered here and has been included only in an ap-
proximate way.

In the first period after arc interruption the en-
ergy transport by radiation plays an important role.
In the core of the arc it even exceeds the conductive
transport. For the stationary arc the radial distribu-
tion of the balance of radiative power per unit vol-
ume, u, is known % 17, It can be split into an emis-
sion, e, of radiative power which is contributing to
the radiative transport and into a corresponding
absorption, a, of radiative power [see Eq. (3)].
With falling temperature the emission of radiation
strongly decreases and so does the absorption. The
emission, e(T), decreases according to the known
temperature dependence. Due to the special tempera-
ture dependence of the coefficient of absorption the
emitted energy is at all stages of the decay absorbed
mainly in arc regions corresponding to the same
temperature. But as the total amount of emitted en-
ergy decreases, less energy can be absorbed with in-
creasing time.

To take into account the change with time of the
radiative transport without exactly solving the ra-
diation transport equation for every time step, a
special assumption is made: The temperature varia-
tion of the absorption, a(T), stays the same as in
the stationary arc, but the absolute values of a(7T)
decreases in such a way that at all stages of the de-
cay the same proportion of the emitted energy is
reabsorbed within the arc. In the chosen arc about
85% of the emitted energy is reabsorbed. The intro-
duction of a pressure dependence of the radiative
term did not change the results noticeably.

The decay of the temperature profile within the
first 100 usec after arc interruption has been com-
puted using temperature steps AT =250 °K and a
wall temperature T, =500 °K. This corresponds to
55 radial grid points in the initial distribution. The
time step chosen was At=2.5x1077 sec for the
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range 0 < ¢ < 35 wsec and At=5x%10"7 sec for
the range 35 < ¢ < 100 usec. The CPU-time neces-
sary to compute these 270 time steps on an IBM
370/155 was 37 sec.

The movement of some of the isothermal radii
towards the arc center is shown in Figure 1. The
radial temperature distribution as well as the time-
variation of temperature can be deduced from this
picture at any time level.

To analyse the origin of this movent, i. e. of the
temperature decrease, the physical effects contribut-
ing to —3r?/Ot are separated in Figs. 2a—c for
different time levels after current interruption. The
displacement of the isothermal surfaces can be split
into the velocity of the isothermal surfaces relative
to mass, vry, and into the mass velocity itself, vy
[see Eq. (8)].

The flow of mass relative to the isothermal sur-
faces, g, is caused by three physical effects, radia-
tion, thermal conduction and work of compression,
as can be seen from Equation (8 a). The contribu-

=
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Fig. 1. Position of squared isothermal radii r2(T;, t) as a

function of time. Solid lines indicate radii corresponding to

Ty = k-1,000 °K, broken lines indicate radii corresponding
to Ty’ = Tx+500 °K.
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Fig. 2. Local time variation of square isothermal radii, split into the four contributing physical processes.
Contribution of radiation:
conduction : INW}
work of compression : (1]
mass flow:

a) Tmmediately after current interruption, b) after the time =15 usec, c) after the time 170 usec.
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tion of all four terms is indicated by hatching in
Figures 2 a—c. Immediately after arc interruption
(Fig.2 a) the emission of radiation dominates in
the core of the arc inducing a strong movement of
isothermal radii towards the axis. The absorption
of radiative energy becomes especially effective in
arc regions with temperatures below 10000 °K.
There gas is heated up by radiation and the radia-
tive term alone would induce a displacement of iso-
thermal lines towards the wall (negative contribu-
tion to — Or2/3t). Thermal conduction plays an im-
portant role all over the cross section. In the low
temperature region it compensates the heating due
to radiative absorption. The share of the pressure-
volume work is nearly negligible. The contribution
of the pure mass flow is especially high near the
wall. There the temperature distribution is carried
with the mass flow (vy; << vy), while in the core of
the arc the displacement is mainly due to the move-

oT 8 °K
. Tha

25

~

t= 100ﬁsec :

O T T
0 025 05

T
075 2

T
(]
Fig. 3. Local variation of temperature with respect to time
at different time levels after current interruption.
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ment of isothermal surfaces relative to the mass
(v > vy).

With passing time (Fig. 2b, ¢), i. e. with falling
temperature, the radiative transport strongly de-
creases. The displacement of isothermal radii is
then mainly due to thermal conduction. The volume-
pressure contribution remains almost constant and
the effect of the pure mass flow becomes less im-
portant.

The local variation of temperature with time is
plotted against the squared radius in Figure 3. It
is given by the product of the velocity of isothermal

radii times the radial temperature gradient:
T 3T or®

= — ; (23)

t or? ot

(&3]

While the quantity — Or2/3t increases continuously
towards the axis, the gradient 3T /372 has especially
high values close to the wall and in the arc region,
with temperatures around 10 000 °K, correspond-
ing to the low values of the thermal conductivity in
the valley between the ionisation and dissociation
peak. In these two regions there are maxima in the
— OT/3t-curve, i.e. there the temperature varies
especially strongly with time.

Radial temperature distributions, as derived from
Fig. 1 for different time levels, are drawn in Fig-
ure 4.

In Fig. 5 the variations of the axial temperature
and the pressure with time are shown. Approxima-
tely 30 usec after current interruption the rate of
decrease of both pressure and axial temperature re-
duces, but it is more pronounced in the case of the
latter. This is the time at which the contributions of
radiative transport nearly disappear and the low
value of the thermal conductivity around 7'=10 000
°K becomes effective in the core.

A quantity which is of special importance in the
description of the behaviour of electric arcs is the
electrical conductance G:

R2
G=I/E=:l0f0dr2. (24)
With falling temperature the electrical conductance
decreases too:

dG Co 36 do 3T
a " { ot dr?; 3t dT 3t (25)
0

To show which arc regions contribute most to the
decay of the conductance at different time levels,
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Fig. 4. Radial temperature profiles at different Fig. 5. Variation of pressure and axial temperature with
time levels. respect to time.
-wﬂ'/me S to —230/3t and — JT/3t in the same proportion
at sec as they do to — Or?/3t.
For the special arc described in this chapter the
751 decay of the electrical conductance after arc inter-
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Fig. 6. Local variation of electrical conductivity with respect
to time at different time levels after current interruption.

—a 30/t is plotted against 72 in Figure 6. After
a time of about 30 usec, when the peak in — 7 J0/3¢
corresponding to a temperature of approximately
10 500 °K has disappeared in the axis the decrease
of the electrical conductance is slowed down. The
four physical effects separated in Fig. 2 contribute

ruption had been measured by HErTZ 1°. His experi-
mental curve is drawn in Fig. 7 as a dotted line and
the result of our computation as a solid line. For
this computation we used an experimental curve for
the electrical conductivity o(7T) as derived from
measurements on a wall stabilized arc at a pressure
of 1 atm* 18, For the pressure variation of the elec-
trical conductivity we used the dependence which is
given by the curves of Yos 6.

For comparison the decay of the conductance,
G(t), has been computed using the theoretical
values of o(T) as given by FrIE and HerTZ 1019
at a pressure of 1 atm and again applying the pres-
sure variation due to YOs 6. The result is drawn in
Fig. 7 as a broken line. Over almost the whole time
range covered in our computation the experimental
curve runs between the two theoretical curves. This
shows that the deviation of the theoretical result
from the experimental curve is not greater than the
uncertainty in the basic material functions.

In the range ¢t>70 usec the G(t)/G, curve using
theoretical 6 (T)-values runs far below the one using
experimental o (T)-values. This is due to the fact
that in the temperature range below 8000 “K the
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001
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Fig. 7. Time variation of the electrical conduc-
tance normalized to its initial value. theo-
retical result using experimental o(T)-values,
— — — theoretical result using theoretical o(T)-
values, experimental result of HErTZ 1°.

T T T

(¢} 25 50 75

theoretical o(T)values, as given by Frie and Hertz
or by Yos, are much smaller than the experimental
6 (T)-values. The decay of the conductance in the
range t>70 usec, as measured by Hertz, indicates
that below 8000 °K the electrical conductivity o (T)
might decrease with falling temperature even less
than the experimental 6(T')-curve we used, i. e. much
less than the 6 (T')-curve given by theory.
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