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The interaction between an electric arc and a gas flow is governed by the flow of mass relative 
to surfaces of constant temperature. This fact is used to introduce a new method for the computation 
of decaying wall-stabilized arcs in which the temperature is used as a free variable instead of the 
radial coordinate. The method is also applicable to more general cases and gives direct insight into 
the physical processes involved. An implicit two level scheme is described which guarantees numeri­
cal stability for any chosen time step. The method is applied to a decaying wall stabilized arc. The 
results agree quite well with published experimental curves.

I. Introduction II. Basic Equations and Physical Picture

There is a general interest in both the stationary 
and the dynamic behaviour of electric arcs because 
of different important technical applications and 
due to the fact that this type of plasma can be pro­
duced and studied in relatively simple geometries. 
A large number of papers has been published on 
the stationary wall-stabilized arc dealing mostly with 
the evaluation of material functions from arc mea­
surements 1-5.

Fewer papers deal with the dynamic behaviour 
of wall-stabilized arcs6-10, although the time varia­
tion of such a simple type of arc readily reveals the 
main features of nonstationary arc behaviour. In 
this paper a new method for the computation of de­
caying wall-stabilized arcs is presented. The method 
is also applicable to more general cases, but in this 
particular example it clearly shows the principle 
underlying the interaction between electric arcs and 
gas flow, i. e. the importance of the flow of mass 
relative to the isothermal surfaces 11112. The method 
described is an improvement of the computation of 
decaying arcs due to its simple form, its stability 
in numerical calculations and its ability to illustrate 
the underlying physical processes. The computations 
are performed for a 5 mm 0 ,  wall-stabilized arc, 
which carries a current of 100 A in 1 atm nitrogen. 
All important physical mechanisms are included 
such as heat conduction and convective and radiative 
transport. For this special example experimental re­
sults have been published 10, which can be used for 
comparison.
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The arc considered here has cylindrical symme­
try. There is no axial mass velocity, so the axial 
momentum balance can be omitted. The radial bal­
ance of momentum is neglected since radial pres­
sure gradients are equalized on a time scale short 
compared to the decay time. Therefore the total arc 
behaviour is described by the conservation of mass 
and energy:
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The symbols used here are: T temperature, E elec­
trical field strength, vT radial mass velocity, Q mass 
density, ^ thermal conductivity, o electrical conduc­
tivity, h enthalpy. The internal energy e is given 
by e = h — pjo. The term u is the balance between 
the radiative power "e" emitted and "a" absorbed 
per unit volume

(3)u = e — a .

We consider the decay of an originally stationary 
arc after current interruption, i.e. after the term 
o E2 in Eq. (2) has dropped to zero. The process is 
described by the system of non-linear parabolic Eqs. 
(1) and (2). It can be formulated as an initial value 
problem and is solved by starting from a stationary 
distribution at time zero.

The stationary arc is described by the right hand 
side of Equation (2). The energy supplied by ohmic 
heating is carried away by conduction and radia­
tion. The temperature profile is curved in such a
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way that the energy flow by conduction, together 
with the radiative energy flow across a certain ra­
dius r equals the energy input by ohmic heating 
within the area enclosed by r:

2TT[ -TX 3 T + 2 71 f  u r dr = 2 rr /  o E2 r dr .

(2 a)

In the time immediately after current interruption 
the heating term has disappeared, but the tempera­
ture profile still maintains its original form. There­
fore the radiative and conductive transport terms 
keep their old distribution and the same amount of 
energy is carried across each radius by conduction 
and radiation as before arc interruption. This loss 
of energy causes a decrease of the energy content 
within the observed radius and therefore a decrease 
in local temperature. The temperature profile is 
therefore changed and with it the transport terms.

In the inner part of the arc the mass density 
rises strongly with falling temperature and a radial 
mass flow from the wall region towards the core 
of the arc is established. It is assumed that the arc 
vessel is closed and so the total pressure drops 
slowly. The induced radial velocity also influences 
the energy balance as can be seen from Equation 
(2). If there is a local change of enthalpy the con­
vection term describes an additional cooling as the 
inflowing colder gas is heated up.

The two terms dh/dt and vr dh/dr of Eq. (2) 
describe the change of enthalpy Dh/Dt which is ob­
served in a coordinate system moving with a mass 
element. These two terms can be substituted by one 
single term if the velocity of mass relative to the 
isothermal surfaces of a given temperature distri­
bution, ümi 5 is introduced:

For simplicity of discussion the pressure depen­
dence of the enthalpy is dropped and the term 
Dh/Dt can be represented by the change of enthalpy 
with respect to temperature times the change of tem­
perature along the path of the element.
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Here the abbreviation Vyi is used instead of vT to 
stress the meaning of vT as the velocity of mass, 
which, like all other velocities in the described ex­
ample has only a radial component. cp is the spe­
cific heat at constant pressure.

Given a radial temperature distribution the change 
of temperature along the path of a mass element, 
DT/D/, can be viewed as the product of the local 
change of temperature with radius, dT/dr, times the 
velocity of the mass element relative to the tempera­
ture distribution, i. e. relative to the isothermal sur­
faces, Vsu .

Dr 3 T
D t

Then Eq. (4 a) reads:
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Only if mass moves relative to the temperature dis­
tribution does the enthalpy of a mass element change 
and does the term described by Eq. (4 b) become 
effective in the total energy balance. If the tempera­
ture distribution is carried with the gas flow (frozen 
temperature distribution) no gas is heated up and 
the term corresponding to Eq. (4 a) disappears from 
the energy balance. On the other hand this term 
also becomes effective if the temperature distribution 
moves relative to the stationary gas, since gas is 
again heated up. Whenever the stationary energy 
balance is no longer fulfilled a flow of the iso­
thermal surfaces relative to mass is set up to balance 
the other terms in the energy equation. In the case 
of the decaying wall-stabilized arc, for instance, 
immediately after current interruption the ohmic 
heating term disappears in the core of the arc and 
a high relative velocity of mass against the iso­
thermal surfaces will be established there. In the 
region close to the wall the energy balance is un­
disturbed; there the relative velocity is zero and the 
temperature distribution is carried with the mass 
flow.

If the absolute velocity of the isothermal surfaces 
vi = dri/dt

is introduced, the velocity of mass relative to the 
isothermal surfaces is given by the difference be­
tween both absolute velocities, Vy and V\:

= *>m -  • (6)
The velocity of the isothermal surfaces represents 
the local variation of temperature with time:

dT _  dT 3n _  _  3T
31 3 r 31 3 r V[. (5 b)

The introduction of the velocity of the isothermal 
surfaces greatly simplifies the computation of other



types of arcs, besides decaying arcs. This velocity 
appears directly when a transformation to a co­
ordinate system is performed in which the tempera­
ture replaces the radius as an independent variable.

III. Isothermal Representation

The system of a decaying cylindrical arc is de­
scribed by the two independent variables radius r 
and time t. As the temperature increases continu­
ously from the wall towards the arc axis there is a 
one to one correspondence between the radius and 
the temperature, and the radius can be replaced by 
the temperature as a free variable. Instead of asking 
for the temperature at a certain rj and t j , T(ri,tj) 
in this representation with T and t as free variables, 
one asks for the radius corresponding to a certain 
temperature T(, at a certain time t j , r(T i,tj). This 
means that one follows the moving isothermal sur­
faces. In this system the described initial value 
problem is solved by computing at every time level 
the variation with time of the radii of the isothermal 
surfaces, dri/dt, which yields by some integration 
procedure the position of the isothermal surfaces at 
an advanced time level. Besides the simplification 
of the whole computation there are two main advan­
tages to this transformation. Firstly the non-linearity 
of the equations due to the temperature dependence 
of the material functions disappears. Secondly, the 
choice of radial grid points which are equidistant in 
temperature ensures an optimal resolution of the 
radial profiles at any time. In the core of the arc 
only a few mesh points are used while in the outer

region, where the temperature changes rapidly with 
radius, a large number of mesh points is used with­
in a certain radial distance. This fact becomes even 
more important in the computation of axially blown 
arcs since in this case the temperature stays nearly 
constant over a large section of the arc core while 
it drops from this core value to the cold gas value 
within a very short radial distance 13. There an ad­
equate mesh point distribution is maintained even 
if, in the case of a decaying arc, this region of steep 
temperature gradients moves towards the arc axis. 
The general procedure and advantages of such a 
transformation are described in 12.

In the simple case considered here the basic 
equations can be transformed to the new coordinate 
system directly. The space derivative in the old co­
ordinate system has to be replaced by the derivative 
with respect to temperature. However, in both cases 
the derivative must be performed perpendicular to 
the time coordinate, i. e. in pure radial direction 
and so one can still use the old abbreviation (d /d r)t 
in the new coordinate system.

The time derivative has to be carried out along 
an isothermal line, i. e. one has to add to the change 
with time at constant radius a term representing 
the change due to the radial displacement of an 
isothermal line:

Replacing the time derivative (3 /3 t)r in Eq. (2) by 
Eq. (7) :

3 h . dp fdh \ r2 1 3 /  3 T\
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On the left hand side the relative velocity between mass and the isothermal surface, i>mi ? appears. Multi­
plication of this velocity by the density Q times the circumference 2 nr% yields the mass flow per unit arc 
length across the isothermal surface at radius r,-:

qTi = 2 n Ti Q (uM -  Vl) =2  n Ti Qvm . (8)
If the relative mass flow, q, is isolated in Eq. (2 b) one obtains

172 1 3 / 3 r \l , 2jlT / l  „ 3M dP /O \
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The quantity q is determined by the balance of all 
energy terms except those due to convection and the 
local variation of temperature with time. It becomes 
effective only if this balance is disturbed. This is 
the case, for example, if one starts from the statio­

nary arc, where the term in brackets is zero, and 
the ohrnic heating term is dropped.

As a time variation of enthalpy along an iso­
thermal surface can only be due to a change in pres­
sure, no time derivative appears in Eq. (8 a) except



dp/dt. The term dp/dt is assumed constant over the 
whole arc cross section and is determined from the 
conservation of total mass. Assuming the value 
dp/dt to be known, the qt at each isotherm can be 
computed directly for any given radial temperature 
distribution according to Equation (8 a ) .

To obtain the radial temperature distribution at 
an advanced time level one has to determine the 
time variation of the isothermal radii, dri/dt, i. e. 
the velocity of the isothermal surfaces, V\, for the 
given distribution. This is possible using the con­
servation of mass once the values qt are known.

To compute drj/dt in an isothermal finite dif­
ference system it is advantageous to start from an 
integrated form of the mass balance. This is obtain­
ed in the new coordinate system if Eq. (1) is inte­
grated over an arc cross-section limited, not by an 
independent value of radius r, but by a radius rt(Tj) 
corresponding to a temperature T 

r{T<)
r dr + 2 71 [ I  3(r| ; M) rd r  = 0 . ( la )

r(T,)

Taking into account the fact that the limit of inte­
gration, r(Tj), is a dependent variable, whereas the 
radial coordinate, r, within the integral is not, this 
equation can be transformed to

dt 2 7i f  q r dr — 2 ti rt J 1 q + 2 ti Ti Q vM = 0 . ( lb )n Ot -

With the definition for the mass flow relative to an 
isothermal surface, qr , this reads:

2 71 f  Q r dr + qrt =0 (lc )

value of the isothermal radius r,->;- +1 must be deter­
mined for every grid point. To do so the time varia­
tion of all isothermal radii, dr^/dt, is computed at a 
given time level tj and then the values of the iso­
thermal radii at the advanced time level t-] + \ are de­
termined by an integration procedure. Along an iso­
thermal surface the time-variation of the squared 
radius changes very little compared to that of the 
radius itself; therefore the variation of r jj  rather 
than of r i j  is computed.

The time variations d rf/d t are obtained for a 
given temperature distribution if Eq. (1 c) is writ­
ten down for an area limited by two neighbouring 
isothermal surfaces:

Vi-Vi-1 = dt f  Q dr2 dt (Qi^i)

_ oAi . ooi dpPi +A{ ^  opdt dt (Id )

Here Ax is the area perpendicular to the arc axis 
between the two isothermal surfaces at r2 (7"j) and 
r2(jTj_i) and Q\ is the mean value of the density 
within this area. As the temperature stays constant 
in time between two isotherms, the density varies 
only with pressure. The values of q\ are known from 
Eq. (8) and the temporal variation of the areas be­
tween isothermal surfaces can be computed:
3 Ai W i - l
dt I dt

arr 
dt

q i-q i- i A, 3Qi dp 
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If the values qi are known this equation yields the 
required time variations, drj/dt, as wil be shown 
in detail in the next chapter.

IV. Method of Computation

The domain of solution is subdivided by a net 
which is made up of lines of equal temperature Ti 
and lines of equal time tj:

Ti = Tw+ ( i - l )  AT,
t} = t0 + jA t. (9)

Here 7\v = Tx is the wall temperature and t0 is the 
time at which the decay of the arc starts.

Starting from the distribution at the time t0 and 
advancing from time level tj to time level tj + \ the

To determine the required quantities, d rf/d t, from 
this equation one must know a boundary value of 
this quantity.

The two boundary points of the radial grid are 
the wall and the axis of the arc. The wall tempera­
ture Ty, stays constant and is chosen as Tx = Tw . 
The radius of this isothermal surface rx2 = rw2 does 
not change with time:

dr\2/dt — 0 . (10)

The axial temperature T\ on the other hand is de­
creasing. The axis is not a point of constant tem­
perature and must be treated separately.

As time increases isothermal radii are disappear­
ing in the axis (see Figure 1). The isothermal sur­
face disappearing in the axis at each time level is 
labelled i = N, i. e. the temperature Ty equals the 
axial temperature TA at each time level. The number 
of radial grid points, N, is decreasing with time.



The difference between the temperature on the axis 
Ty, and the temperature Ty_\ of the neighbouring 
isothermal surface does not equal the chosen con­
stant value AT, but depends on time. Therefore the 
common formulae of an equal finite difference sys­
tem cannot be applied in the region neighbouring 
the axis.

For the grid points i = N and i = N — 1 the varia­
tion of the different physical quantities with the 
radial coordinate, i. e. the temperature, are com­
puted using a series expansion of T in r2, where all 
but three terms are dropped.

The time variation of the isothermal radius ry2 is 
directly given by Eq. (8) since the radial mass 
velocity is zero on the axis:

t\u(r2 = 0 ) = 0 ,  
3r:v/3*= (3r2/3 0 rs=o = -  (q/?1 Q)r*=o• (H ) 

From this the variation of the axial temperature T\ 
with time can be determined:

d r A/d< = -  ( 3 7 7 3 ^ 0 ( 3 ^ / 3 ^ = 0 .  (12)
Once the values of qi are computed at each grid 
point of a certain time level, (3r2/3f)r! = o as well as 
(dr^/dt) are known quantities according to Eqs. 
(10) and (11). One of the two values is used as a 
starting point to compute the time variation of all 
isothermal radii, d rf/d t, according to Equation (10). 
The second one is used to determine dp/dt. To do 
this one has to compute all values of qt and 3rj2/3f 
in two parts.

qi = ai + bi(dp/dt), 
d rf/d t = öj + ßi(dpfdt). (13)

If all coefficients a ;, bt , a.[ and ßi are known, the 
equation dr12/d t = 0 for instance yields the value 
dp/dt.

In Eq. (8 a) there appear derivatives with respect 
to the radial coordinate. In the isothermal represen­
tation they are given by: 
dF _  1 3F 1 Fi + 1-Fi_i 
3/ dr2/dT 37 3r2/3T 2 AT

dr2 
dT
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2 AT (14)
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In discrete form the second derivative reads:
/3 V \  =  r2i + i - 2  tf+ifi-1
\3  T*Ji (AT)*

V. Numerical Stability

(16)

For reasons of numerical stability the second deriva­
tive with respect to temperature must be isolated in 
the term describing the divergence of the heat flux 
vector:

The special choice of grid points in the isothermal 
representation becomes advantageous only if the 
stability of the computation is not made much worse 
in the transition to the new coordinate system. In 
this chapter therefore we investigate the numerical 
stability of the isothermal system.

If the basic equations are put in discrete form 
using grid points which are equidistant in tempera­
ture, i.e. with AT = const, the radial distance, At, 
between two neighbouring grid points can become 
extremely small in certain arc regions. This implies 
a severe limitation on the possible time step At if 
the common two level explicit schemes are used for 
the computation of the unknown quantities at the 
advanced time level tj +1, starting from the already 
known distribution at the time level tji

rh+1 = r\j + A t(d r2/dt) j . (17)

This method is numerically unstable unless At is 
smaller than the value given by the von Neumann 
condition. In isothermal representation this condi­
tion reads:

At <; Atm ax= J(ATY 
2

ocp ( 3r\2 
* \dTJ ' (18)

If this limiting value is computed locally, i. e. over 
the arc cross section, extremely small values of 
^Wx appear in the arc region close to the wall. 
These would require an injustifiably high comput­
ing time.

These instabilities can still be removed even using 
an explicit method, if the three level scheme due to 
Du F o r t  and F ra n k e l14 is applied, where the 
central term in Eq. (16), 2 rfj , is replaced by 
r + r f j +i . There are two disadvantages to this 
method in our case. For time steps about one order 
of magnitude larger than the value given by Eq. (18) 
the method also becomes instable. Furthermore, an 
extremely high precision in the computation is ne­
cessary.

In our computations we therefore used an im­
plicit two level scheme of the type described for in­
stance in 14. This method is stable for any time step 
At, so that the value of At is limited only by the



desired accuracy of the results. In this method an 
equation is set up for each radial mesh point which 
contains, in linear form, three unknown values of 
the quantity required at the advanced time level. 
The corresponding matrix is inverted using a tri- 
diagonal solution method 15.

In the two level scheme used here the quantities 
required at the advanced time level are given by 14:

where the coefficients

2 9 Arlj+1 = r i,j + At { 1 -0 ) dt ) M dt )j+l (19)

To ensure stability 0.5 0 1. In our example 
9 = 0.5 did yield stable behaviour.

It is assumed that at the time level tj the radial 
distribution of all quantities, and therefore also the 
values rjj and (drf/d t) j , is known. The expres­
sions {drf/dt) j + i on the other hand, at an advanc­
ed time level depend in a very complicated way on 
the unknown radii . As the numerical instabi­
lity is caused by the second derivative with respect 
to the radial coordinate, i. e. the term given in Eq. 
(16), it is sufficient to treat only the isothermal 
radii appearing in Eq. (16) as unknown quantities 
at the advanced time level. All other expressions in 
(3rj2/3z)i + i containing the isothermal radii rfj+i 
are computed using values of rfj+i which have been 
determined in an explicit way (for instance by put­
ting 0 = 0). In this case four unknown radii rfJ+i 
appear in linear form in each of the Eq. (18). But 
if the area between two neighbouring isothermal 
surfaces

Ai = Ji{rti - rf) (20)

is introduced instead of the radii r f , only three un­
known values, A jj + 1, appear in each equation. The 
matrix representing the system of Eq. (19) is then 
tri-diagonal and can be inverted according to known 
methods 15:

- a iAi + 1 + ßiAi - y iAi- 1 = di . (21)

Here the areas Ai are the quantities required at the 
advanced time level tj + i . All matrix elements ait ßi, 
Yi, dt are known as they are computed using radii 
rfj+i determined in an explicit way.

In the isothermal representation the boundary 
values must be included in a special way. The in­
version of the matrix (21) is therefore described 
in detail.

The matrix is inverted introducing 15
Ai = wiAi + l + g i (22)

a i
9i =

Si+yigi-x
Pi 7i wi -1 ' "" Pi — yiWi-\

can be computed as w2, and g2 can be determined 
directly from the area next to the wall

w2 = a2/ß 2, g2 = d2/ß i .
One further boundary condition must be used to 
determine the highest t-value of the A-t . In our case 
this is the condition

l A i = .-zr12.
In the isothermal representation the temperature 
difference between the axis and the neighbouring 
isothermal surface r does not equal the constant 
step AT. Therefore at the grid point i = N —l, Eq. 
(16) cannot be applied and Eq. (19) cannot be 
written in the form (21). For this reason the value 
/•jv_ij+i is computed according to Eq. (19) where 
all radii appearing in (3r^r_i /St)j + x are determin­
ed in an explicit way. The second boundary con­
dition is then:

N-1

i = 2
If the abbreviations

S, = l + u>j _ i Si _ i , 
Gi = Gi - 1 + gi Si

are used with

there follows
S2 = 1, Go = g2

JV-1
2  Ai = ti (r12 -  ) =G n . 

i = 2
2 + Sjv-1 Ay_ !

From this equation can be determined and
subsequently, with Eq. (22), all other areas A-t .

The described method yields numerical stability 
in our computation as long as the computed quan­
tities do not change too much within one time step. 
In the case of very strong variations within one time 
step one single iteration of the whole procedure en­
sures numerical stability. In this case the coefficients 
of the matrix (21) are computed using, in the sec­
ond step, the radii determined in the first step of the 
iteration procedure.

VI. Computation of a Decaying Nitrogen Arc

As a specific example of the method described 
above the decay, after current interruption, has been



computed for a 5 mm 0 ,  wall-stabilized arc which 
carries a current of 100 A in 1 atm nitrogen. The 
stationary arc corresponding to the chosen values 
is described in detail in 4. The temperature varia­
tions of all material functions are known from theo­
ry as well as from experiment16' 4. The pressure de­
pendence of the mass density and the electrical con­
ductivity have been taken into account exactly. The 
pressure dependence of the thermal conductivity and 
the specific heat on the other hand has nearly no 
influence on the decay of the arc in the range con­
sidered here and has been included only in an ap­
proximate way.

In the first period after arc interruption the en­
ergy transport by radiation plays an important role. 
In the core of the arc it even exceeds the conductive 
transport. For the stationary arc the radial distribu­
tion of the balance of radiative power per unit vol­
ume, u, is known ^ 17. It can be split into an emis­
sion, e, of radiative power which is contributing to 
the radiative transport and into a corresponding 
absorption, a, of radiative power [see Eq. (3)]. 
With falling temperature the emission of radiation 
strongly decreases and so does the absorption. The 
emission, e(T), decreases according to the known 
temperature dependence. Due to the special tempera­
ture dependence of the coefficient of absorption the 
emitted energy is at all stages of the decay absorbed 
mainly in arc regions corresponding to the same 
temperature. But as the total amount of emitted en­
ergy decreases, less energy can be absorbed with in­
creasing time.

To take into account the change with time of the 
radiative transport without exactly solving the ra­
diation transport equation for every time step, a 
special assumption is made: The temperature varia­
tion of the absorption, a(T), stays the same as in 
the stationary arc, but the absolute values of a(T ) 
decreases in such a way that at all stages of the de­
cay the same proportion of the emitted energy is 
reabsorbed within the arc. In the chosen arc about 
85% of the emitted energy is reabsorbed. The intro­
duction of a pressure dependence of the radiative 
term did not change the results noticeably.

The decay of the temperature profile within the 
first 100 //sec after arc interruption has been com­
puted using temperature steps J7' = 250oK and a 
wall temperature Tw = 500 °K. This corresponds to 
55 radial grid points in the initial distribution. The 
time step chosen was zlf = 2.5 x 10-7 sec for the

range 0 t 35 //sec and zlf = 5 x l0 ~ 7 sec for 
the range 35 t 100 //sec. The CPU-time neces­
sary to compute these 270 time steps on an IBM 
370/155 was 37 sec.

The movement of some of the isothermal radii 
towards the arc center is shown in Figure 1. The 
radial temperature distribution as well as the time- 
variation of temperature can be deduced from this 
picture at any time level.

To analyse the origin of this movent, i. e. of the 
temperature decrease, the physical effects contribut­
ing to — dr2/dt are separated in Figs. 2 a —c for 
different time levels after current interruption. The 
displacement of the isothermal surfaces can be split 
into the velocity of the isothermal surfaces relative 
to mass, üjm , and into the mass velocity itself, i>m 
[seeEq. (8)].

The flow of mass relative to the isothermal sur­
faces, q, is caused by three physical effects, radia­
tion, thermal conduction and work of compression, 
as can be seen from Equation (8 a ). The contribu-
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Fig. 1. Position of squared isothermal radii tz(T{, t) as a 
function of time. Solid lines indicate radii corresponding to 
Tk = k-1,000 °K, broken lines indicate radii corresponding 

to tv  = Tä+500 °K.
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Fig. 2. Local time variation of square isothermal radii, split into the four contributing physical processes. 
Contribution of radiation : 

conduction:
work of compression : lnilü!il 
mass flow: IÜE1

a) Immediately after current interruption, b) after the time < = 15/<sec, c) after the time t = 70 /<sec.



tion of all four terms is indicated by hatching in 
Figures 2 a — c. Immediately after arc interruption 
(Fig. 2 a) the emission of radiation dominates in 
the core of the arc inducing a strong movement of 
isothermal radii towards the axis. The absorption 
of radiative energy becomes especially effective in 
arc regions with temperatures below 10 000°K. 
There gas is heated up by radiation and the radia­
tive term alone would induce a displacement of iso­
thermal lines towards the wall (negative contribu­
tion to — dr2/d t) . Thermal conduction plays an im­
portant role all over the cross section. In the low 
temperature region it compensates the heating due 
to radiative absorption. The share of the pressure- 
volume work is nearly negligible. The contribution 
of the pure mass flow is especially high near the 
wall. There the temperature distribution is carried 
with the mass flow (i>mi vm) ? while in the core of 
the arc the displacement is mainly due to the move­
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Fig. 3. Local variation of temperature with respect to time 

at different time levels after current interruption.

ment of isothermal surfaces relative to the mass
(fMi >  •

With passing time (Fig. 2 b, c), i. e. with falling 
temperature, the radiative transport strongly de­
creases. The displacement of isothermal radii is 
then mainly due to thermal conduction. The volume- 
pressure contribution remains almost constant and 
the effect of the pure mass flow becomes less im­
portant.

The local variation of temperature with time is 
plotted against the squared radius in Figure 3. It 
is given by the product of the velocity of isothermal 
radii times the radial temperature gradient:

While the quantity — dr2/dt increases continuously 
towards the axis, the gradient oT/dr2 has especially 
high values close to the wall and in the arc region, 
with temperatures around 10 000°K, correspond­
ing to the low values of the thermal conductivity in 
the valley between the ionisation and dissociation 
peak. In these two regions there are maxima in the 
— dT/dt-curve, i. e. there the temperature varies 
especially strongly with time.

Radial temperature distributions, as derived from 
Fig. 1 for different time levels, are drawn in Fig­
ure 4.

In Fig. 5 the variations of the axial temperature 
and the pressure with time are shown. Approxima­
tely 30 //sec after current interruption the rate of 
decrease of both pressure and axial temperature re­
duces, but it is more pronounced in the case of the 
latter. This is the time at which the contributions of 
radiative transport nearly disappear and the low 
value of the thermal conductivity around T = 10 000 
°K becomes effective in the core.

A quantity which is of special importance in the 
description of the behaviour of electric arcs is the 
electrical conductance G:

r*
G = I/E = 7i f  o dr2 . (24)

o
With falling temperature the electrical conductance 
decreases too:

Rtd G f co J 2 3(7 dö 3T / nc \
dt = Jl J 37 dr"; 37= d f  37 • (25) 

0
To show which arc regions contribute most to the 
decay of the conductance at different time levels,
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Fig. 4. Radial temperature profiles at different 
time levels.
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Fig. 5. Variation of pressure and axial temperature with 

respect to time.

Fig. 6. Local variation of electrical conductivity with respect 
to time at different time levels after current interruption.

— jido/d t is plotted against r2 in Figure 6. After 
a time of about 30 //sec, when the peak in — n do/dt 
corresponding to a temperature of approximately 
10 500 °K has disappeared in the axis the decrease 
of the electrical conductance is slowed down. The 
four physical effects separated in Fig. 2 contribute

to —ti do/dt and — dT/dt in the same proportion 
as they do to — dr2/dt.

For the special arc described in this chapter the 
decay of the electrical conductance after arc inter­
ruption had been measured by H ertz  10. His experi­
mental curve is drawn in Fig. 7 as a dotted line and 
the result of our computation as a solid line. For 
this computation we used an experimental curve for 
the electrical conductivity o(T) as derived from 
measurements on a wall stabilized arc at a pressure 
of 1 atm 4' 18. For the pressure variation of the elec­
trical conductivity we used the dependence which is 
given by the curves of Yos 16.

For comparison the decay of the conductance, 
G(t), has been computed using the theoretical 
values of o(T) as given by Frie and H e r tz 10,19 
at a pressure of 1 atm and again applying the pres­
sure variation due to Yos 16. The result is drawn in 
Fig. 7 as a broken line. Over almost the whole time 
range covered in our computation the experimental 
curve runs between the two theoretical curves. This 
shows that the deviation of the theoretical result 
from the experimental curve is not greater than the 
uncertainty in the basic material functions.

In the range f> 70  //sec the G(t)/G0 curve using 
theoretical o(T)-values runs far below the one using 
experimental o(T)-values. This is due to the fact 
that in the temperature range below 8000 °K the



theoretical o(T)values, as given by Frie and Hertz 
or by Yos, are much smaller than the experimental 
o(T)-values. The decay of the conductance in the 
range f>  70 //sec, as measured by Hertz, indicates 
that below 8000 °K the electrical conductivity o(T) 
might decrease with falling temperature even less 
than the experimental o(7,)-curve we used, i. e. much 
less than the o(T) -curve given by theory.
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